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Abstract

A numerical-experimental method for identification of elastic properties of laminated composites from the experi-
mental results is developed. It is proposed to use the method of experiment design and the response surface approach to
solve the identification (inverse) problems. The response surface approximations are obtained by using the information
on the behavior of a structure in the reference points of the experiment design. The finite element modeling of the
structure is performed only in the reference points. Therefore, a significant reduction (about 50-100 times) in calcu-
lations of the identification functional can be achieved in comparison with the conventional methods of minimization.
The functional to be minimized describes the difference between the measured and numerically calculated eigenfre-
quencies of structure. By minimizing the functional the identification parameters are obtained. It was shown that
identification functional is convex if the stiffness matrix linearly depends on unknown parameters. The method is
employed to identify the elastic properties of cross-ply laminates from the measured eigenfrequencies of composite
plates. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Discussing the role of experimental mechanics (Knauss, 2000) in an increasing computational capabil-
ities it was emphasized that now it is possible to extract physical information from more involved exper-
iments that previously. In this direction during the last decade investigations for developing a new
technique for material identification, the so-called mixed numerical-experimental technique, have started.
Mainly stiffness properties have been investigated (Sol, 1986; Pedersen, 1989; De Wilde, 1991; Mota Soares
et al., 1993; Grediac and Vautrin, 1993; Sol et al., 1993; Link and Zou, 1994; Frederiksen, 1997a).

The determination of stiffness parameters for complex materials such as fiber reinforced composites is
much more complicated than for isotropic materials since composites are anisotropic and non-homoge-
neous. Conventional methods for determining stiffness parameters of the composite materials are based on
direct measurements of strain fields, i.e. using information at a point of solid only. Boundary effects, sample
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size dependencies and difficulties in obtaining homogeneous stress and strain fields are some of the most
serious problems. As a result of this, indirect methods using mainly a field information have recently re-
ceived increasing attention. One such indirect method is based on measurements of the structure response
and application of the numerical-experimental identification technique.

Mixed numerical-experimental methods are sensitive for model errors because the numerical model is
always based on a series of hypotheses. If the real structure does not satisfy one or more of these hy-
potheses, the model of the structure is evidently not appropriate. Since the development of mixed nu-
merical-experimental techniques for material identification is aimed at obtaining a practical method which
yields quick and reliable results, much research has been done in order to minimize these model errors
(Mota Soares et al., 1993; Frederiksen, 1997b.c).

In the meantime many different approaches were produced for identification of the physical parameters
directly characterizing structural behavior (i.e. Young’s modulus and density of the material). In Bolognini
et al. (1993) appropriate comparison between actual eigenfrequencies of an existing structure and those
obtained through the finite element analysis was performed. It led to the identification of parameters which
can be used for the model calibration as well as for the detection of damaged zones in the structure.

Numerical-experimental identification methods are mainly used in structural applications. For example,
in Mota Soares et al. (1993) elastic properties of laminated composites have been identified by using ex-
perimental eigenfrequencies. The stiffness parameters were identified from the measured natural frequencies
of the laminated composite plate by direct minimization of the identification functional. Similar approach
in order to identify the stiffness properties of the laminated composites was used in Frederiksen (1997a) and
Araujo A.L. (1996). In Frederiksen (1997b) an improved plate model was used for identification of elastic
constants of the laminate. In De Visscher et al. (1997) it was shown that the mixed numerical-experimental
method can be used also for identification of damping properties of polymeric composites. Influence of
modeling errors and measurement errors on parameter estimation was discussed in Frederiksen (19970,
1998).

In the present study a numerical-experimental method for the identification of mechanical properties of
laminated polymeric composites from the experimental results of the structure response has been further
developed. The difference between conventional (Mota Soares et al., 1993) and present approach is that
instead of direct minimization of identification functional the experiment design is used, by which response
surfaces of the functional to be minimized are obtained. The response surface approximations are obtained
employing the information on the behavior of a structure in the reference points of the experiment design.
Note that the finite element modeling of the structure is performed only in the reference points. The func-
tional to be minimized describes the difference between the measured and numerically calculated parameters
of the response of structure. By minimizing the functional the identification parameters are obtained.

The main advantage of the present method is a significant reduction of the computational efforts.
Previously this method based on experiment design and response surface approach was used for solution of
the optimum design problems (Rikards, 1993; Rikards and Chate, 1995). Similarly, the response surface
approach was used in design optimization (Roux et al., 1998). A review of optimization in relationship to
experiment design was presented in Haftka et al. (1998).

2. Parameters of identification and criterion

The numerical-experimental method employed in the present study consists of the following stages. In
the first stage the physical experiments are performed. Also the parameters to be identified, the domain of
interest and criterion containing experimental data are selected. In the second stage the finite element
method (FEM) is used in order to model the response of the structure and calculations are performed in
a reference points of the domain of interest. The reference points are determined by using a method of
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experiment design. In the third stage the numerical data obtained by the finite element solution in the
reference points are employed in order to determine approximating functions (response surfaces) for a
calculation of the structure response. In the fourth stage, using the approximating functions and experi-
mentally measured values of the structural response, the identification of the material properties is per-
formed. For this a corresponding functional is minimized by using a conventional method of non-linear
programing.

2.1. Parameters of identification

The present numerical-experimental approach is employed for identification of the elastic properties of
laminated composite plates. For this the experimentally measured eigenfrequencies are used. It is assumed
that the plate dimensions (see Fig. 1), plate mass, the layer angles f5; and the layer stacking sequence are
known. Directions of material axes of a single layer are denoted 1-2-3, where 1 is the fiber direction and 2,
3 are the transverse directions. The unidirectional layer is assumed to be a homogeneous and transversely
isotropic with respect to the fiber direction material.

The parameters to be identified are five elastic constants of the single layer of the laminate: Ey, E;, Gy,
G2, vi2. The laminated plate is modeled by the plate theory including transverse shear, rotatory inertia and
extension of the normal line (Rikards and Chate, 1997). In this case the constitutive equation of the single
layer of laminate in the symmetry axes of material is as follows

11 An A A 0 0 0 e
02 Ay Ayn A4 0 0 0 €2
o3| _ |4z A A 0 00 £33 (1)
073 0 0 0 A44 0 0 2823 ’
g13 0 0] 0 0 A55 0 2813
12 0 0 0 0 0 A66 28]2
Here o;; is a stress tensor, ¢; (i,j = 1,2,3) is a strain tensor of the layer and 4y (k,/=1,2,...,6) is the

elastic stiffnesses, which for the 3D stress state can be expressed through five elastic constants of the layer
(Altenbach et al., 1996). In the case of plane stress state these relations are as follows

E, E, vinks

Ay=— g2y,
! 1 —vpE JE’ 2 1 —vpEy JE 2 1 —vpEy JE

A44 = G23, A66 = G12' (2)

Fig. 1. Geometry of laminated plate.
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Note that for transversely isotropic material Ay = A3z, Ay = A3, Ass = Agg and Ay = %(Azz — A53).

Laminated plates investigated here is of moderate thickness. For such plates influence of extension of the
normal line on eigenfrequencies is negligible. Sufficient accuracy can be achieved employing a Mindlin’s
plate theory accounting for the transverse shear deformations only. However, for the Mindlin’s plate theory
in the constitutive equation (1) instead of stiffnesses 4;; a reduced stiffnesses Q,; are used (Reddy, 1996). In
this case the reduced stiffnesses Q;; are a non-linear functions of 4;;. The constitutive equation in form (1) is
chosen to preserve linear dependence of the stiffness matrix of plate on parameters 4,;. Therefore, a con-
vexity of identification problem can be proved (see below).

The plate is composed of unidirectionally reinforced layers. In general, the ith layer of the laminated
plate can be oriented at an arbitrary angle f3,. The angles of the layers are assumed to be fixed. For example,
the cross-ply laminate consists of the layers with angles 5; = 0° and f8; = 90°.

The vector of parameters x to be identified can be chosen in a different ways. Components of this vector
could be elastic engineering constants or elastic stiffnesses 4,;. The major problem in parameter estimation
is ill-conditioning caused by unknown variables having substantially different order of magnitude. For
example, Young’s modulus and Poisson’s ratio cannot be directly selected as components of vector x
without proper scaling. In Frederiksen (1997c¢) the scaling by longitudinal modulus E; was employed and in
addition a fixed scaling factor was chosen. Hence, all unknown parameters were measured on compatible
scales. Similar scaling and reparametrisation was employed in Mota Soares et al. (1993), where additional
scaling by the first experimental frequency allows to reduce the number of unknown variables from five to
four. Thus, material parameters of the single layer can be expressed in terms of dimensionless variables ¢;
(Mota Soares et al., 1993)

062:4—4(%),
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The inverse relations of Eq. (3) are as follows
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The variables «; are chosen to be on compatible scales. The first set of identification variables is defined by
these dimensionless quantities o;. The vector x(;, to be identified is given by
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X1) = [xlax21x37x4} = [Of270<3706470€5] (6)

In Mota Soares et al. (1993) additional scaling parameter C was introduced using the first experimental
frequency in order to eliminate one variable. Let the experimental angular eigenfrequencies be designated
by @, @y, ..., ®;, where I is the number of measured eigenfrequencies f, (@; = 2nf,). The corresponding
numerical (predicted) eigenfrequencies f; (w; = 2nf;) for the set of material parameters o; are represented by
Wy, Wy, ...,o. Let us consider the scaling parameter C which is chosen according to the relation (Mota
Soares et al., 1993)

—
Wy

o) 7

where w,; is the first numerical eigenfrequency calculated with the prior selected longitudinal Young’s
modulus EY of the layer (Mota Soares et al., 1993). In the present paper the initial guess value of the
longitudinal modulus is taken EY = 35 GPa.

The second set of identification variables is defined by the stiffnesses 4;;. The vector x(y) is given by

X(2) = [x1,X2,X3, X4, X5 | = [A11, 42,412, Ass, As |- (8)

These parameters practically are to be on compatible scales. However, in order to obtain the engineering
constants from A4;; in addition a system of three non-linear equations (2) should be solved.

The elastic constants can be evaluated through the identification procedure using the experimental ei-
genfrequencies of the laminated composite rectangular plate of constant thickness 7, length a and width b
(see Fig. 1). Identification procedure can be formulated using either the vector of unknown variables x ;) or
X(2)-

2.2. Identification functional and minimization problem

Firstly, the formulation of identification problem is given for the case if the vector of unknown variables
is defined by Eq. (6).

The functional to be minimized describes deviation between the measured @; and numerically calculated
;(x) frequencies (Mota Soares et al., 1993)

i=2 w;

! @ — Clon(x)]*) !
(I)<x(1>) _ ngl) ( i [ 4( ('))] ) _ ZWEI)eiZ- (9)
i=2

Here ¢; is relative discrepancy or residual and wl(l) are weights for identification functional using the first set
of variables. It is possible of assigning non-negative weights to each residual. For simplicity, only unity
values are used hereafter. The estimation can be based on any set of frequencies by assigning weights of
zeros and ones as appropriate.

The identification of the elastic constants x(;) is performed on the basis of information obtained from the
measurements of the I lowest frequencies. Note that the first frequency is not directly used for identification
since this frequency was used for the scaling (see Eq. (7)). The identification problem is formulated as
follows

min ®(x)) (10)

X

subject to constrains

E
gi(xp)=4—-u>0 or E£>0 (11)
1
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2 (x0)) = 8-n—3n-u ]>0 or @>O, (12)

16%—(%ﬁ)%%§ E

2(%5 — 05(8 — 0 — 30(3 — 0(4)

G23

g3(X(1)) = 2 >0 or E_ >0, (13)
- () () |
— o
2l(xa) = — 84_ 20; _a2>o or ,/——|v12|>0 (14)
M o o™ i =2,3,4,5. (15)

The upper o™ and the lower «™" bounds on the identification parameters can be chosen using preliminary
information about the composite material. Constraints (11)—(14) denote conditions of a positive definite-
ness of the elasticity matrix.

In the second formulation of the identification problem the vector x(, (see Eq. (8)) is employed and the
functional to be minimized is as follows

1 1
CU — |W; 2)
D(xp) = wa ) (@ [w Zw( e’ (16)
i=1 i i=1
Here w,(-z) are weights for identification functional using the second set of variables. Again constrains for the

upper and lower bounds on elastic constants are used and in addition constraints for positive definiteness of
the elasticity matrix are employed

gi1(xp) =41 >0, 2(xp)) = An >0,
g3(xp) =Anudn - 43, >0, (17)
84(X(2)) = Aag > 0, gs(x(2)) = Aes > 0.

3. Vibration test of plates

The glass/epoxy cross-ply laminated plates consisting of eight unidirectional layers with a layer stacking
sequence [90/0/90/0], were tested. A geometric dimensions and density of plates are presented in Table 1.
The eigenfrequencies of the test plates were measured by a real-time television (TV) holography. The
samples were hung upon two threads in order to simulate free-free boundary conditions. The sample was
located in front of the holographic testing device. A piezoelectric resonator (in the following called “sen-
sor’’) was glued in one corner to excite the sample plate with increasing frequency. The sensor is of circular

Table 1

Parameters of the cross-ply laminated plates
Sample a (m) b (m) h (mm) p (kg/m?)
PU10 0.1401 0.1401 2.011 1850

PU11 0.1401 0.1401 1.981 1850
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shape with a diameter 25 mm located at the coordinates x = @ — 12.5 mm and y = b — 12.5 mm. Mass of
the sensor is m; = 3.5 g.

The plate is illuminated by laser light and imaged by charged couple device (CCD) array, resulting in
speckled image on the PC monitor. When the plate is deformed (exited), this interference pattern is slightly
modified. Digital subtraction of two consecutive interference patterns yields a fringe pattern depicting the
surface displacements of the plate. The nodal lines of the vibration modes can be easily identified on the
monitor. The measurement technique more detailed was described in Yang et al. (1995) and Bledzki et al.
(1999).

Experiments were performed for both plates considered (see Table 1) and about 20 flexural eigenfre-
quencies were measured. The mode shapes also were recognized in the experiment. In Table 2 the exper-
imental plate flexural frequencies are presented. The quantity m denotes the wave number in the x direction
and n denotes the wave number in the y direction (see Fig. 1). The mode shapes (nodal lines) for the plate
PU10 are presented in Fig. 2. These mode shapes were recognized in the experiment and most of them were
used in identification. However prior to experiment the mode shapes were calculated by the FEM using the
initial guess values of the elastic constants. Such calculations is necessary in order to recognize all fre-
quencies in the range and corresponding mode shapes. The mode shapes presented in Fig. 2 were calculated
using the elastic constants obtained through identification (see Table 3 below). In calculations of the present
mode shapes the mass of sensor was not taken into account. Calculating the plate with sensor the fre-
quencies are slightly different and the mode shapes are similar but no more symmetric. Note that in the
identification procedure each experimental frequency should be related to the numerical frequency having
the same mode shape.

Table 2
Experimental plate flexural frequencies f; (Hz)

Mode i Mode shape m,n Specimens

PUI10 PUI11
1 1,1 166 159
2 2,0 341 332
3 0,2 - —
4 2,1 484 464
5 1,2 542 529
6 2,2 902 869
7 3,0 971 938
8 3,1 1090 1050
9 0,3 1155 1143
10 1,3 1273 1240
11 3,2 1523 1470
12 2,3 1643 —
13 4,0 1898 1838
14 4,1 2003 1940
15 3,3 2290 2180
16 0,4 - -
17 4,2 2418 2338
18 1,4 - -
19 2,4 2733 2665
20 4,3 - -
21 5,0 3108 3023
22 5,1 3233 3135
23 3,4 -

3605 -

S}
=
w
&)
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Fig. 2. Vibration modes of cross-ply laminated plate PU10.

Table 3

Elastic properties of single layer
Property PUI10 PU11

1 2 1 2

E,, GPa 38.89 38.29 38.20 37.22
E,, GPa 12.78 12.63 11.95 12.41
G2, GPa 5.06 5.11 4.71 4.75
Gy, GPa 11.70 14.00 9.55 7.41
Vi2 0.304 0.350 0.392 0.426

4. Finite element solution

The eigenvalue problem for harmonic vibrations of the plate can be represented by
Ku = o> Mu. (18)

Here K is the stiffness matrix of the plate, M is the mass matrix and u is the displacement vector. The
eigenvalue relation (18) equation for the mode u; which corresponds to the first experimental eigenfre-
quency @, can be written in an equivalent form placing E; in evidence

EIK*lll = w%Mlll. (19)
Here E1K* = K is the stiffness matrix. Taking into account relation (7) this equation can be written as
CEYK*u; = CotMu,, (20)

hence
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Sensor

Fig. 3. Finite element mesh.

E, = CEY, (21)

where EY is the initial guess value given to the Young’s modulus in the fiber direction of the layer and E is
the corresponding identified mechanical property. After evaluation of the optimum value of x(;) (the first
set of identification variables) the remaining mechanical properties are calculated by inverse relations (5).

For the second set of identification variables x ;) the same eigenvalue equation (18) has been solved. The
only difference is that other reference points of experiment design (see below) are selected since in this case
the dimension of the design space is five. Hence numerical frequencies are predicted in other points of the
design space as in the case of using the vector x;), for which the dimension of the design space is four.

The eigenvalue problem (18) was solved by using subspace iteration technique (Bathe, 1982) and a
triangular finite element of laminated thick plate with a shear correction (Rikards and Chate, 1997). In
order to avoid ‘shear locking’ a selective integration technique was applied. A 22 x 22 regular mesh (968
finite elements) was considered in order to achieve appropriate accuracy for at least 20 first eigenvalues of
the laminated plate with FFFF (all edges free) boundary conditions. The finite element mesh of the plate is
shown in Fig. 3. In calculations of predicted frequencies w(x(;)) or w(x(;) the mass of sensor should be
taken into account.

5. Method of experiment design

In this paper the approach suggested (Audze and Eglais, 1977) and used later in solution of optimal
design problems (Rikards, 1993) is followed. It considers a non-conventional criterion for elaboration of
plans of experiments which is not dependent on the mathematical model (approximating functions) under
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consideration. The input data for the elaboration of the plan include only the number of variables n
(number of factors) and the number of experiments k. The main principles in the present approach are as
follows

1. The number of levels of factors (same for each factor) is equal to the number of experiments and for each
level there is only one experiment.

2. The reference points (points of experiment) are distributed as regular as possible in the domain of vari-
ables.

To realize the second principle it is suggested to use a criterion

where L;; is a distance between the reference points having numbers i and j (i # j). The criterion (22) is a
physical analogy of the minimum of potential energy of repulsive forces for a set of points of unit mass, if
the magnitude of these repulsive forces is inversely proportional to the distance L;; cubed between the
points. Note that the force can be obtained as derivative of the potential energy.

The problem of minimizing the criterion (22) together with the first principle leads to a non-linear
programming problem. Solving the non-linear programming problem the plans of experiments were de-
termined for different number of the design variables #» and different number of the experiments k.

The plan of experiment is characterized by a matrix B;;, which contains the levels of factors for each of k
experiments. For example, for a number of design variables (factors) n = 2 and k£ = 9, the matrix of plan is
given by

c 71254968 3
3263514978]' (23)

The corresponding plan of experiments is shown in Fig. 4. The domain of interest (domain of variables) is

determined as x; € [x;.“i“,xm“x] where x‘“‘" and x7** are respectively the lower and the upper bounds on the

~/
8
()
2
O
4
6
O
3
(}
o1
zg &2 S
xllnin xrlnax

Fig. 4. Experiment design for n =2 and k = 9.
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design variables. Thus, in this domain the reference points, where the numerical experiments must be
performed, are calculated by the expression

i min 1 max min
) = oy (=X (B — 1), (24)
Here i =1,2,...,kand j=1,2,...,n. Since the matrices B;; of the experiment design are universal, they

may be used for the various identification or optimum design problems. Some other approaches in rela-
tionship with applications of the experiment design in solution of optimization problems were reviewed in
Haftka et al. (1998).

6. Approximation of the response surface

Methods based on approximation concepts take dominant position in design optimization and the
development of new high quality approximation functions has become a separate problem (Van Campen
et al., 1990; Barthelemy and Haftka, 1993). Approximation models are often used in engineering optimi-
zation when the optimization using the original function (original simulation model) is expensive.

The most popular approximating models are polynomial models, created by performing a least squares
curve fit to a set of data. The data consist of response values at the selected number of reference points.
These points can be selected using different experiment designs. The polynomial based modeling methods
have come to be known as response surface (RS) models.

Techniques from experiment design and response surface methodology (Box et al., 1987) were used to
build the approximate models from the data in the reference points. In (Roux et al., 1998) and other in-
vestigations the response surface methodology was applied for solution of optimum design problems. There
are different ways of selection of approximating functions other than polynomials. Recently the response
surfaces for optimization problems were obtained employing genetic programming (Toropov et al., 1998).
Other possibility to build a model is using engineering knowledge of the true functional form of the re-
sponse (Vanderplaats, 1984).

The RS methodology can be used also for solution of identification problems. Consider a response y (in
our case eigenfrequencies) dependent on a set of variables x. In our case there are four (the first set of
identification variables) or five (the second set of identification variables) identification variables repre-
senting the elastic constants of the material. Thus the original function is denoted by

y=y(x). (25)

The original function in our case is determined through deterministic computer simulations (finite element
solutions). Since the original function is computationally expensive the approximation is employed. The
approximating function is defined by

Y= y(x). (26)

Note that approximating function is valid only at the some domain of interest defined by upper and lower
bounds on the variables and in our case in addition defined by positive definiteness of the elasticity matrix.
Important is choice of upper and lower bounds on the variables since using smaller subregions can increase
accuracy of approximation. Further it will be shown (see below) that the original function (eigenvalue) is
concave function in the design space defined by the second set of identification variables.

The selection of points in the design space where the response must be evaluated was discussed in the
previous section. The goal is by using the data only in the reference points (in our case these data are
obtained by the finite element solution of the eigenvalue problem (18)) to obtain the approximation y(x) in
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the mathematical form. Here such mathematical models (response surfaces) have been obtained for the first
I eigenfrequencies of the cross-ply laminated plates.

The existing methods of regression analysis are based on the principle that the equation form is a priori
known and the problem is to find coefficients (the so-called tuning parameters) of the equation. However,
in most cases the form of the equation also must be determined. Such a method was proposed earlier
(Rikards, 1993; Rikards and Chate, 1995) to obtain a simple mathematical models for the structural
optimization problems. Further this method is briefly outlined and applied for the identification problem
considered here.

Let us consider a method, in which a form of the regression equation is unknown. There are two re-
quirements for the regression equation — accuracy and reliability. Accuracy is characterized by a minimum
of standard deviation. Increasing the number of terms in the regression equation (response surface) could
improve accuracy, moreover, it is possible to obtain a complete agreement between the experimental data
and values given by the equation of regression. But in this case the prediction can be very poor at the other
points of the domain of interest. In Toropov et al. (1998) where the approximating function was built using
genetic programming the quality of approximation is measured by the fitness function and special coeffi-
cient penalizing the excessive length of the expression was introduced. Reliability of the regression equation
means that accuracy for the reference points and any other point in the domain of interest is approximately
the same. Obviously, if the number of terms of the regression equation decreases, the reliability of the model
increases. A compromise between accuracy and reliability of the model must be found.

The selection of the ‘best’ regression equation (response surface) in the subregion defined by the lower
and upper bounds on the design variables is performed by the following procedure. The response surface is
built by using data obtained by computer simulation in all points of experiment design. First, consider the
approximating function (model) of the following form

F(x) =D _Aipi(x), (27)
i=1
where 4; are unknown coefficients (tuning parameters) and ¢,;(x) are the functions that constitute the
model. These functions are built from the set of simple functions ¢, @,,...,@g. The functions ¢, (r =
1,2,...,R) are assumed to be in the form
o.(x) = [ 1%, (28)
=1

where 7 is the number of variables and o,; are positive or negative including zero integers. The form of the
approximating function (27) is determined in two steps. First, the perspective functions ¢,(x) are selected by
using the least-squares estimation. Then a step-by-step reduction procedure of the number of terms in the
model is applied and further reduction of the selected functions is performed. In each step a new set of
tuning parameters 4; is obtained. Details of this procedure and a corresponding program called RESINT
were described in Rikards (1993). The reduction procedure for one numerical example will be shown below
in order to obtain the approximating function for the second eigenvalue of Eq. (18) describing the vi-
brations of the cross-ply laminated plate. Note that there is no general rules for the procedure of reduction
of terms in the model (response surface function) and it is necessary to acquire some experience to obtain
appropriate function.

Approximating functions for the functionals (9) and (16) are obtained as follows. For the first set of
variables (6) the approximations are obtained for the frequencies f; = w;/2n. The approximating functions
fi(xq)), 1.e. @:(xq)) = 2nf;(x()), then are used in minimization process of the functional (9) instead of
original functions. For the second set of variables (8) the approximations are obtained for the eigenvalues
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J; = w?. The approximating functions /Ti(x(z)) then are used in minimization process of the functional (16)
instead of original functions.

7. Determination of elastic constants

Let us consider the procedure of identification for the cross-ply composite plates. The experiment design
with four variables (n = 4) and 35 reference points (k = 35) was selected for the first set of variables Eq. (6).
The experiment design with five variables (n = 5) and 36 reference points (k = 36) was selected for the
second set of variables Eq. (8).The upper and lower bounds (domain of interest) of the elastic constants for
the first set of variables were taken as follows

5 GPa<FE, <20 GPa,
3 GPa < G]z < 9 GPa,
3 GPa < G23 < 14 GPa,
0.2 < Vi2 < 0.4.

(29)

The upper and lower bounds of the elastic modulus E; for the second set of variables were selected by
33 GPa<E; <43 GPa. (30)

Constraints for other elastic constants were taken the same Eq. (29) as for the first set of variables.

For the first set of variables Eq. (6) the lower and upper bounds were recalculated by Eq. (3). For the
second set of variables Eq. (8) the lower and upper bounds were recalculated by Eq. (2). By using the matrix
B;; of the experiment design (n = 4 and k = 35 for the first set of variables, » = 5 and k£ = 36 for the second
set of variables) in the expression (24) the values of x(;y and x(; were calculated for all reference points.
Employing the values of parameter x(;) in the reference points and the initial guess value EY = 35 GPa the
first 20 natural frequencies in all k points were calculated. Similar calculations were performed also for the
second set of variables x(y).

The finite element mesh of the plate was shown in Fig. 3. It should be noted that there is some originality
in calculation of the mass matrix M in Eq. (18). In order to represent more accurate an inertia forces of the
plate, the mass of sensor mg should be taken into account. In the finite element modeling it is assumed that
the finite elements where the sensor is located (see Fig. 3) have the same thickness / as the plate, but for
these finite elements an equivalent density p,q, is calculated
myg

peqv:p+l;~sh-

Here F; is the area of the sensor.

The data of numerical simulations were used to determine the response surfaces (27). For this the
RESINT program (Rikards, 1993) was employed. For the first set of variables approximating functions
were obtained for frequencies. These functions were used in the functional (9). For the second set of
variables approximating functions were obtained for the eigenvalues. These functions were used in the
functional (16).

For the second set of variables x(;) as example two approximating functions (first and second eigenvalue)
are given below

J1(x@) = 0.127 x 107 +0.602 x 1025 + 0.155 x 10°z,,
Ja(x(2)) = 0.456 x 107 +0.126 x 10z, 4 0.362 x 10°z, — 0.304 x 10°z; (31)
+0.240 x 10°z5 — 0.133 x 10°22 + 0.443 x 10°z,z;.
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Here normalized variables are introduced

z; = —8.21+40.21 x 107°4,
2= —1.614+0.12 x 107°4,,,
z3=—1.46+0.31 x 107°4,, (32)
74 = —1.554+0.18 x 10 %Ay,
25 = —2.00 4+ 0.33 x 107 4.

Correlation ¢ of approximating functions with the FEM data for the first eigenvalue is ¢ = 0.979 and for
the second eigenvalue ¢ = 0.991. Similar expressions were obtained for other eigenvalues. Note that
transverse shear modulus is presented only in approximations for the higher eigenvalues, i.e. for the modes
9, 10 and 13. Influence of the transverse shear deformations on the first frequencies is small and therefore
this variable is not presented in the all approximating functions.

The approximating functions were obtained using the step-by-step elimination procedure. The diagram
of reduction of terms building the function for the second eigenvalue is shown in Fig. 5. It is seen that the
first break in diagram corresponds to the regression equation with seven terms. At eliminating the seventh
term the correlation with the data of numerical experiment decreases much more in comparison with the
previous step. Eliminating further this term an accuracy of approximation can be lost. Thus, for the second
eigenvalue the approximating function is selected with seven terms. It should be noted that polynomial
terms were not selected a priori. These terms were obtained in the process of building the model and se-
lected as the best regressors.

Depending on approximations in the identification different number of experimental eigenfrequencies
were used. Thus, for the plate PU10 using the first set of variables in identification procedure the vector of
weights (see Eq. (9)) is as follows

wl=0 10111 111111110000T1O00O0O0 0]

Note, that using in identification the first set of variables the first experimental frequency is taken into
account indirectly, i.e. in the scaling (see Eq. (7)) but not directly in the functional Eq. (9). Thus, in this case
at all 14 experimental frequencies are employed in identification.

For the same plate PU10 using the second set of variables in identification procedure the vector of
weights (see Eq. (16)) was set different

098 | e R R
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0.96 |

094 |
092 | /

090 |

Correlation ¢
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088 F/

Drs

0.86 L N S PV S B
3 4 5 6 7 8 9 10 11 12

Length of expression p

Fig. 5. Diagram of term reduction for the function 4,(x)).
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w?>=[110110000T1T1O0O0T1O00O0GO0O0O0TO0TO0O0 O]

Thus, using for identification the second set of variables only seven experimental frequencies are employed.
Such difference is due to different approximating functions. In the present paper only the approximating
functions with correlation ¢ > 0.90 are employed.

For the plate PU11 using the first set of variables in identification procedure the vector of weights is as
follows

wl=[0 101110111101 T1000O0T1O0OTO0OTO0O0 0]

In this case at all 12 experimental frequencies are employed in identification. For the same plate PU11 using
the second set of variables in identification procedure the vector of weights is given by

w?=[110110000010110000T100°O0 0 0]

In this case for identification only eight experimental frequencies are employed.

Minimization of the functional (9) or (16) subject to constrains was performed by the random search
method (Rikards, 1993). For the second set of variables in addition a system of three non-linear equations
(2) was solved. Results of identification of the layer stiffness properties for the two plates considered (PU10
and PUI1) are presented in Table 3. Here in the columns noted by 1 and 2 the results obtained using in
identification the first and second set of variables are presented.

It is seen that in-plane Young’s moduli £, and E, and shear modulus G, obtained by using different set
of variables are in good agreement. Larger differences is for the Poisson’s ratio vj,. The reason is that
influence of Poisson’s ratio on frequencies is considerably smaller and in this case accuracy of approxi-
mation is not sufficient. The transverse shear modulus G»; is overestimated. The transverse shear modulus
cannot be reliable determined from the measured frequencies since the plates were too thin (2/a = 1/70) for
identification of this property. In this case more thick plates should be used.

Verification of the results was performed by the FEM and through the independent experiments. For the
finite element analysis the elastic constants obtained by the identification procedure were used (see Table 3).
Results are shown in Table 4. Residuals were calculated by the expression

S (3)

It is seen that differences between the experimental and numerical frequencies calculated by using elastic
constants obtained by identification are very small. Mostly residuals do not exceed 1%. Exception is for the
mode 15 of the plate PU10 since in this case the difference is 3.14%. Note that for the verification at all 19
(plate PU10) and 17 (PUI11) experimental frequencies are used but for the identification considerably
smaller number of frequencies were taken into account. Predicted frequencies (see Table 4) which were not
taken into account for identification also are in good agreement with the experimental ones.

It is of interest to compare the elastic constants of the single layer of the cross-ply laminate with the
properties obtained for the unidirectionally (UD) reinforced transversely isotropic plate made from the
same material (Bledzki et al., 1999). Results are presented in Table 5. For the cross-ply laminate the mean
values calculated from four values of Table 3 are showed. Good agreement of the results for the constants
E|, E, and Gy, is observed. However, there is some difference for the Poisson’s ratio. It can be explained
since this property is less sensitive to frequencies as modulus of elasticity, especially for the cross-ply
laminate. Due to approximations an accuracy for the Poisson’s ratio has been lost. In Mota Soares et al.
(1993) it was shown that good accuracy for the Poisson’s ratio can be obtained employing in minimization
the original (numerical) functions instead of approximating functions.

4;
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Table 4
Flexural frequencies f; (Hz) and residuals 4; for plates PU10 and PU11
Mode i PU10 PU11
Experimental FEM A; (%) Experimental FEM A; (%)
1 166 166.4 +0.24 159 158.5 —0.31
2 341 344.2 +0.94 332 332.1 +0.03
3 - 416.2 - - 407.3 -
4 484 486.1 +0.43 464 470.1 +1.31
5 542 545.9 +0.72 529 526.9 —0.40
6 902 895.6 -0.71 869 866.8 —0.25
7 971 967.5 —0.36 938 944.0 +0.64
8 1090 1087 —0.28 1050 1050 0
9 1155 1165 +0.87 1143 1134 —0.79
10 1273 1278 +0.39 1240 1247 +0.56
11 1523 1513 —0.66 1470 1469 —0.07
12 1643 1632 —0.67 - 1584 -
13 1898 1865 —1.74 1838 1814 —1.30
14 2003 2001 —0.10 1940 1950 +0.51
15 2290 2218 -3.14 2180 2155 —1.15
16 - 2275 - 2212 -
17 2418 2379 —1.61 2338 2314 —-1.03
18 - 2414 - - 2355 -
19 2733 2724 —0.33 2665 2657 —0.30
20 - 3010 - - 2923 -
21 3108 3157 +1.58 3023 3074 +1.69
22 3223 3226 +0.22 3135 3141 +0.19
23 - 3315 - - 3230 -
24 3605 3617 +0.33 - 3522 -
Table 5
Comparison of results for cross-ply and UD laminates
Property Cross-ply plate UD plate
E,, GPa 38.15 38.81
E>, GPa 12.44 12.12
G2, GPa 4.92 5.09
Vi2 0.368 0.255

8. Convexity of identification problem

It can be proved the uniqueness of solution of the problem of identification of elastic constants. Actually,
the objective function @(x) in Eq. (16) is convex if the eigenvalues A(x) is a concave functions of x since in
the objective function the predicted eigenvalue 4(x) is with the minus sign. The proof of this statement is as
follows.

The eigenvalue problem (18) can be written in the form

K(x)u= J(x)Mu, i(x)= w*(x). (34)

Here the / x [ stiffness matrix K is a linear function of the parameters of identification x if the constitutive
matrix of material Eq. (1) linearly depends on unknown variables. Matrices K and M are a symmetric
positive definite matrices. The matrix K depends on parameter x, while the matrix M is independent of it.
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Vector u € E! characterizes all possible vibration modes. In Gantmacher (1959) it was shown that the
extreme eigenvalue of the problem (34) can be determined through the relation

Jmin = min(Ku,u), u € E', (Mu,u) = 1. (35)
Here (Ku,u) is notation for the quadratic form. Now the following property of concave functions is em-
ployed (Rockafellar, 1970). Assume that d;(x) (i = 1,2,...,m) are concave functions of parameter x. Then
the function

d(x) = min[d; (x),dr(x), ..., du(x)] (36)

is also concave, i.e., the minimum of set of concave functions of parameter x forms a concave function of x.

For all possible vectors u the quadratic form (Ku, u) in Eq. (35) forms a set of functions of parameter x.
Here vectors u in Eq. (35) are arbitrary in E' under condition that they are orthonormalized in M-metric,
ie., (Mu,u)=1.

The conditions described above can be summarized in the following statement. The lowest eigenvalue of
the problem Ku = AMu, where K is a symmetrical positive definite matrix that depends on parameter x, and
M is a symmetric positive definite matrix that is independent of x, is a concave function of x if quadratic
form (Ku, u) is a concave function of x. This statement firstly was proved in connection with solution of the
optimum design problems of composite shells (Rikards, 1980).

From the above statement it follows that if the elements of K are linear functions of x, then the quadratic
form (Ku, u) is also a linear function of x. Since a linear function is simultaneously concave and convex, the
lowest eigenvalue An,;, of the problem Ku = AMu is a concave function of the parameter x. Similarly can be
proved a statement that the second, third and higher eigenvalues are also concave functions of parameter x.
For this a condition of orthogonality of eigenvectors should be used (Gantmacher, 1959).

The properties of eigenvalues can also be analyzed numerically. From analysis of contour plots of the
eigenvalues it is seen that these are concave functions of parameter x. Identification functional (16) is a
quadratic function of predicted eigenvalues A(x). Since A(x) in the functional is with the minus sign the
function in brackets is convex. Thus the functional (16) is a convex function of parameter x. It is seen in
Fig. 6, where the contour plot of the identification functional for the plate PU10 is presented.

Due to convexity of the functional more simple approximating functions can be obtained building a
model for the response surface method. Thus, minimization employing the simplified model is computa-
tionally much less expensive than using the original (numerical) functions.
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Fig. 6. Contour plot of identification functional Eq. (16) for plate PU10.
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9. Conclusions

Elastic constants of a single layer of the cross-ply laminate have been determined by using the identi-
fication procedure based on the method of experiment design and the response surface approach. It was
shown that identification functional is convex if the stiffness matrix linearly depends on unknown pa-
rameters.
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